A NEW COMPRESSION TECHNIQUE
FOR TOOLS THAT USE DATA-FLOW GRAPHS
TO MODEL DISTRIBUTED REAL-TIME APPLICATIONS

Stergios Papadimitriou (1, 2), Achilles Kameas (1),
Panayiotis Fitsilis (1, 3) & George Pavlides (1, 2)

(1) University of Patras
Department of Computer Engineering & Informatics
Patras, Greece

(2) Computer Technology Institute
Patras, Greece

(3) Intrasoft
Athens, Greece

Abstract : This paper deals with the effective representation of data flow graph (DFG)
models for distributed real-time applications. To this end, we first present the real-time
data flow graph (RDFG) model, which is a modification of the traditional DFG model that
we will be using to cope with the special requirements of distributed real-time tasks. Then
we present a new technique for RDFG compression, which can also be applied to DFGs.
Using it, CASE tools based on the DFG model can benefit both in storage and speed by
transforming the graph to a more compact form. The algorithm consists of three phases
applied consecutively to a DFG that has been previously transformed to a task-tree. The
whole process has been developed in the context of SEPDS project, which aims at
producing an experimental CASE tool based on the DFG model. Finally, we present the
conclusions drawn from the analysis of the computational complexity of this technique,
together with future directions of our research on the subject.

Keywords : CASE tbols, software development environments, real-time applications,
data flow graph

1 Introduction

as the smallest processing entity that is dispatchable by an operating system) as a modeling unit
[3.45] Although methodologies that use DFGs to represent the task structure [211.10] offer in-
aeased granularity of analysis, they also lead to large analytical and simulation models which often
require enormous computing resources, The application of a compression process can alleviate this
problem by constructing an equivalent and pmich smaller DFG.

In this paper, we first present (section 2) the Real-time Data Flow Graph model (RDFG), which
is a modification of the traditional DFG model we have made in order to represent dffectively the
execution of real-time workloads. This model has been successfully incorporated im SEPDS [7.8]. an
experimental Software Development Environment for distributed applications based a1 DFG models.
Then we present and analyze a new technique for DFG compression (section 3). Our compression
algorithm transforms a DFG into an equivalent cne which is rmuch smaller. Thus CASE tools based
an the DFG model can benefit hoth mn storage and speed by transforming the DFG to a compressed

Our improvements over previous works an compression processes [1] are threefold. First, we intro-
duce two new constructs to the traditional DFG in order to Tepresent the parallelism at the fine and
coarse grained levels and also study the compression rules of the new constructs. Second, the pro-
posed task tree based Compression process is simpler and more efficient. Finally, our modification to
the traditional DFG results in a model which integrates elegantly the Task Flow Graph (TFG) [10.1]
and the Generalized Stochastic Petri Nets (GSPNs) [1,6]. The designer has one simple and flexible
model to become familiar with (the modified DFG) and the computational overhead associated with
the transformation between two models (TFG and GSPN) is avoided.

In the end, we present results concerning the complexity and the validity of the presented com-
Pression technique, as well as the state of our current research on the subject,

2 The Computational Mode]

The traditional DFG model, as it was presented in [7,8] forms the basis of our computational model. In
order to make it a suitable basjs for the decornposition and performance evaluation of large distributed
systems, we have made a mumber of extensions.

We have associated an execution time, é(a), with each actor. It can depend both on the specific
data values that the actor uses and on its execution state (described by the state Links presented
below). In addition, the PRE(a) and POST(a) functions are generalized; now they may be arbitrary
logic functions over the IFS and OFS, respectively.

A new link type, the state &nks is introduced, in order to capture the state m which an actor
operates at each time instant. Finally, a new field, TY PE(a) is mtroduced as an indicator of whether
an actor is primitive, or can be further decomposed. It can be used to describe the system at different
levels of detail.

Consequently, an actor q is defined as a 5-tuple:

a=(PRE(a), POST(a), FUN(a),b(a), TY PE(a))

The variation of the DFG mode] presented above is called the EDFG model. Depending on the
mput links that affect the execution of an actor (called the Input Firing Set - IFS) and the cutput
links affected by this execution (called the Output Firing Set - OFS), we'can define a set of Primitive
Graphs (PGs), together with the associated execution rules; this set in the EDFG model contains four
PGs [8]: And Primitive Graph (APG), Or Primitive Graph (OPG), Select Primitive Graph (SPG)
and Replicate Primitive Graph (RPG).

The EDFG model is, however, mappropriate for systems having strict timing constraints, because
it is too general a mode] to fullfill the need for formal analysis and validation that these systems have.
To facilitate the Tfepresentation and analysis of real-time Processes, we have added to the above set a
mumber of PGs.

The Or Primitive Graph Loop (OPGL), Select Primitive Graph Loop (SPGL) are used as entry
(OPGL) and exit (SPGL) points of a loop; branching back probabilities and branching dependent delay
factors can be associated with SPGL. In addition, the Not Primitive Graph (NPG), which operates

daisy
Rectangle

much like a hardware inverter, and serves a similar purpose with the inhibitor ares of extended Petri
Net models [6].

Also, two chain primitive graphs, CHain Start(CHS) and CHain End(CHE), which simply pass
their inputs to their outputs are used to represent the ordering of the actors i a chain sequence. A
Replicate Parallel Primitive Graph (RPPG) serves to model the spreading of a task on IANY processors

its output links. Each such subgraph is executed on a separate processor, while the overhead to spread
the task (67o,4) is accounted.

Finally, the And Parallel Primitive Graph (APPG) and Or Parallel Primitive Graph (OPPG) are
used to join the execution of a parallel task previously spreaded with the RPPG, and correspond to a
Join point of a parallel task: an APPG to a point where all the joined subtasks rmst complete their
execution whereas for the OPPG it suffices the completion of one subtask. The overhead to join a
parallel task execution (é;,i,) can be associated with the APPG and OPPG primitive graphs.

A real-time process needs to communicate with other processes and with its environment (via
the input/output of control information) in order to accomplish its control mission. This can be ac-
complished by using a few commaunication primitives [1] with well defined semantics. The points of
process execution where commnunication primitive calls are made, are called communication points.
Each communication point can cause a rescheduling operation; therefore #o analyze the timing behav-
wr of a task, the whole task system must be considered. Further communication imposes precedence
relations between tasks that complicate scheduling issues (parts of lower priority tasks must be com-
pleted to enable a higher priority). At the communication points communication actors are placed in
the graph notation that correspond to the desired primitive call.

An actor that is not a communication actor, performs some computation and will be referred to as
a computation actor or simply actor. The notation A; will be used to represent a computation actor
while C; will be used for a communication actor.

Furthermore, we mmst apply two restrictions on this model. First, we require that all the actor
firing times §(a) mmst be exponentially distributed R.Vs. This is a restriction applied on the power
of the model in order to make formal analysis methods based on the derivation of Continuous Time
Markov Chains (CTMCs) applicable. Second, algorithms that reduce the number of actors by merging
them whenever possible cannot be applied if their transformation rules are not expressed precisely. For
this reason, each actor is restricted to have one input and one output link. Any PRE(a), POST(a)
function is expressed in an AND/OR/NOT logic using the PGs. Also to each PG acting as an upper-
end point of a subgraph, a bwer-end point PG with the same number of inputs as the outputs of
the upper-end must correspond. This is a restriction on the structure of the model that does not
affect its power. Note that in order to achieve such symmetry in model structure, we must ignore the
mternal structure of the communication actors, which depends cn the communication semantics and
is completely irrelevant to this work, since we regard communication actors anly as boundaries an the
processing of other components.

The DFG model with these modifications made to address the special requirements of real-time
systems and especially of the analytical methods is referred to as the Real-Time Data Flow Graph
(RDFG) model.

3 The compression process

An RDFG can be decomposed mnto six types of subgraphs depending an the execution semantics
imposed on the components of those subgraphs. A component of a subgraph is either an actor or
recursively a subgraph. The components are recursive elements that can be replaced by any of the

given in parentheses):

® the Chain-Subgraph - CSG (CHS to CHE): All its components are executed serially in the
order in which they appear (which imposes precedence constraints between them)

e the And-Subgraph - ASG (RPG to APG): All its branches mmst be executed before control
flows out but they can be executed in any order. Each branch mmst have at least one actor.

daisy
Rectangle

e the Or—Subgrz;'.ph - OSG (SPG to OPG): Only one branch is executed. A probability density

function determines the branch selection. There can exist one branch with no actor (NULL
branch).

e the Parallel-Min - PMINSG (RPPG to OPPG): Each of its branches is executed on a separate
processor and the first branch that completes is sufficient for the execution of the whole subgraph.

e the Parallel-Max - PMAXSG (RPPG to APPG): Differs from PMINSG in that it requires
the completion of @l of its branches (each an a separate processor) in order to complete its
execution.

e the Loop-Subgraph - LSG (OPGL to SPGL): It is introduced to allow the timing of lop
constructs. It consists of a loop body (subgraph between OPGL-SPGL primitive graphs) that
is executed l—klﬁ, Py # 1, times where P, is the branching back probability.

Before the compression technique can be applied, the RDFG mmst be transformed into a task
tree. The 100t of the task tree is the whole RDFG (viewed as subgraph). Intermediate non-leaf nodes
consist of the six types of RDFG subgraphs and the leaves are the RDFG actors. All subgraphs in the
same level in the task tree are assigned the same level number. By convention, level number 0 (level
0 of the task tree) is given to the root, 1 to the subgraphs positioned directly under the root (level 1
of the task tree) and so on.

For a task tree with N levels (with the root having level mumber 0 and the leaves N — 1) the
compression algorithm performs N — 1 iterations of a three-phase compression process applied consec-
utively and sequentially an the components of every level starting from the N — 2 (second outermost)
level and proceeding upwards to the root (level 0). The first phase tries to compress the subgraph on
which it is applied by combining its actors (Actor Combination Phase). The second phase moves an
actor to a subgraph of the same level if it is possible to combine that actor an every branch of the
subgraph in order to reduce the total number of actors (Actor-to-Subgraph Movement Phase). Finally
the last phase merges adjacent PGs (whenever a possible), allowing combination of actors that were
mitially in different subgraphs (PG Merging Phase).

The following three subsections describe how each phase operates on the currently active (working)
level, while the compression algorithm (which simply calls bottom-up, with respect to the task tree,
each of the three phases N — 1 times) is presented at the end of the section in algorithmic format,
together with the results of its analysis.

3.1 Actor Combination Phase

Actors in the same level can be combined if and only if the combination is a correctness preserving
transformation, that is, if the precedence constraints imposed between any two actors are retained by
the combination (functional correctness), and if the timing behavior of the task system is not affected
(temporal correctness). This means that for all tasks, the probability densities of the times wntil their
communication points remain unaltered (note that cnly the timing in respect with the communication
points if of our concern).

As far as the RDFG model is concerned, the precedence constraints are retained if the combination
merges a set of adjacent computation actors in a CSG or LSG (possibly all their actors) or a set of
ASG, OS5G or PMINSG branches (possibly all the branches). The timing behavior remains unaffected
canly when the delay associated with the combination accounts correctly for all the delays of the actors
that it replaces.

Combinations at the same level can be horizontal, when two or more branches (children) of an
ASG, OSG or PMINSG are combined, vertical, when actors are vertically combined in a CSG or
LSG, or total, when a whole subgraph is replaced by a single equivalent module. This applies to all
the subgraph types (except for the PMAXSG where we will forbid any combination for reasons related
to the exponential distribution). 7

The following proposition gives a necessary and sufficient condition for the existence of a total
subgraph combination (the proof is contained in [12]):

Proposition 1 A4 subgraph S has total combination if and only if it does not contain any communi-
aition actors.

daisy
Rectangle

A CSG can have vertical and total combinations. ¥ it does not contain any communication actors
then, by the above proposition. the whole C5G can be replaced by a single equivalent actor. The
expecled execution time of an actor derived after a combination in a CSG is computed by summing
up the execution times of the combined actors. i

The ASG and OSG can have only horizontal and total combinations. For an OSG with n branches,

let p; be the probability of the i-th branch and 4, its expected execution time. Then éps; = iy pib;m
&

the case of total OSG combination, and (= %—%‘92‘, when a subset COMB of 0SG branches
1 € compPr

are horizontally combined into the single equiva[gnt module j'. As far as the ASG is concerned,

execution times are computed in the same way as in the CSG case.

The LSG can have vertical and total combinations. The vertical LSG combinations are similar to
those of the CSG. For its total combination, let P, (P, # 1) be the loop’s branching probability. Then
the actor derived after the total loop’s combination has mean value b = lTéf’;’ Py # 1, where § is
the mean value of a single loop’s iteration.

Although the expected execution times after combinations in a CSG, ASG, OSG and LSG can
be obtained easily from by the semantics of the combinations, the same is not true for the PMINSG
and PMAXSG. In the PMINSG (PMAXSG) cases the execution time of a combination is a random
variable defined as the minimum (maximum) of the random variables that describe the execution times
of the combined branches. This definition is based on the execution semantics of those subgraphs.

Thus, for the PMINSG subgraph, only horizontal and total combinations are allowed. Using
the fact that the minimum of exponentially distributed RVs is also exponential (9] (since ép,,,, =

min{é;,...,é, }) we have (b¢c, and btc, are the overheads to spread and join the task’s execution):
6PM{N = ';ITT;‘_-_II_—TIS_I— +5fc; ‘i‘"(SrQ] o for the total PMINSG Combination and 6PM.’N = (EfECOMB -bvl:)—l o
1 2 n

when a subset COM B of the PMINSG’s actors can be horizontally combined.

The combination of actors inside the PMAXSG is not allowed, since the maximum of exponentially
distributed RVs is not exponential.

The following proposition validates the combination rules which work by summing the execution
times of the combined modules by proving that any error will be on a strictly conservative basis:

Proposition 2 The compression process will produce error on q strictly conservative side (the o
riginal model has variability less than or equal to that of the compressed). ;

Proofs of the correctness of the combination rules and of the above proposition are given in [12].

During the actor combination phase, if a PG is found adjacent to a communication actor, it is
marked with a stopping point. Such a point improves the efficiency of the compression algorithm
by stopping early the attempt of the next phase to move and combine actors mside the subgraph.
While working with the task tree representation two flags for each subgraph node are needed. They
correspond to the two stopping points needed in the RDFG for upper-end and lower-end PGs. The
total and horizontal ASG combinations are illustrated in Figure 1 both in their RDFG and task tree
form. Note the removal of PGs (subgraph nodes for task tree) after total combinations; it is done to
prepare the processing of the next phase.

3.2 Actor-to-Subgraph Movement Phase

While the rules of the combination phase work with actors at the same level, the actor-to-subgraph
movement phase contains rules that are stated in terms of an actor and a subgraph at the same level
m the task tree representation. The general rule to follow in this phase is:

An actor is moved inside q subgraph (of the same level) if & is possible to be combined within that
subgraph with a correctneds preserving transformation,

Again, this rule applies differently to each subgraph type. If an outer actor A, is adjacent to
the CHS point and there is an mner actor A; directly below the CHS point, the outer actor A, can
be moved inside the CSG and combined with A; (Figure 2.a). The case where an cuter actor exists
adjacent to the CHE point and there is a CSG’s actor directly above it is similar.

For the LSG, a similar operation as m the CSG case is being carried out, but the execution time
of the moved actor is adjusted by mmiltiplying it by 1 — p,.

If an actor is above the SPG point of an OSG and there exists an actor at each branch of it adjacent
to the SPG, then the outer actor can be moved in and combined on every OSG branch (Figure 2.b).
The case with an actor below the OSG is similar.

daisy
Rectangle

Total A=/

RPG Level / Total /
=

ASG A l
A] *|Anp —' / \
l l l Level ' (b)
&6) (a be e R
4 4
£ e (e
<+ + ‘ < +
| EHS). (EHS) - EHS CHS
G T e £ 7
l- Horizontal ‘.
aqf 3 . 4 [ag — [An] § o 4
al Tl Il
5 b
CHE CHE @ @
AL < T g 1 1
(APG L APG j

Gr—
o
~—
S

/ Horizontal -/

e = A
cave/ [aql.-[cse] [escl. [ay) [A—h|u Csol [csa] L
ziye/ ¢; N (a1 [a] | ¥ ¢ (a1 [3] M

(d)

Figure 1: The total (a. and b.) and horizontal (c. and d.) And-Subgraph combinations in RDFG and
task tree representations.

daisy
Rectangle

In these cases the total mumber of actors is reduced by one. When an actor adjacent to an ASG
boundary (RPG or APG) exists, no combination can be done, since it would violate precedence
constraints and execution time equivalence. For the same reasons, the movement and combination of
actors al PMINSG and PMAXSG boundaries is also prohibited.

3.3 Primitive Graph & Subgraph Merging Rules

Some of the PGs that were adjacent in the original RDFG and some PGs that have become adjacent
during the compression process are redundant and st be merged to prepare the graph for the next
combination phase that will be applied to the immediate upper level. This phase operates both on
PGs at the RDFG and on the subgraph nodes at the task tree representation.

Each PG merging operation raises the level of the inner subgraph by one, making possible the
combination of the actor of the inner level (derived by the combination phase) with the actors of the
upper level subgraph during the next combination phase, or the movement and combination of an
upper level actor inside the subgraph during the next actor-to-subgraph movement phase.

Two PGs connected by an edge (adjacent) can either have the same level mimber or level numbers
that differ by ane. Thus if G; — (2 means "an edge exists from PG G, to G»7, then there exist three
possible cases (n @ the working level): G, G are in the same level(n), G is one level(n) inside the
level of Gi(n — 1), or G is ane level(n) inside the level of Ga(n — 1). For each of the above three
cases, all the possible adjacent PGs combinations mmst be handled with a combination rule based on
the PGs executional semantics.

Examples of each of the three cases, as they appear in graphs of the RDFG model, are depicted in
Figure 3. It is noteworthy to observe that the stopping points are always assigned at the outer level
(smallest level number) PG. This permits the second phase to test efficiently whether or not an actor
can be moved inside an OR-Subgraph. Below the rules for the cases (a), (b), (c), (d), (e) of Figure 3
will be explained. All the possible subgraph merging rules are given i [12].

In the notation we will be using to describe the PG combination mules, G — Gy : C — G1(G2)
means "combine the G, 3 PGs and replace them with their combination G'1(G3) without assigning
any stopping point”, G| — G, : § — G(G;) denotes the assignment of a stopping point to (, (G2)
with no combination, and G, — Ga: NULL means no action is taken.

In case (a) of Figure 3, the combination rule: APG — SPG : NIULL means that no combination
is possible and no stopping point assignment is done.

In case (b), the RPG forces all its branches to execute in any order but the SPG causes only one
of its branches to execute. Any RPG, SPG combination will change the program’s semantics and
its execution time and thus it mmst be prohibited. The stopping point assigned to RPG by the PG
combination rule: RPG — SPG : 5 — RPG prevents any combination between actors separated by
the RPG (even though the algorithm does not make any attempt to move inside ASG’s boundaries).

In case (c), using the same reasoning, the stopping point is assigned to the OPG with the rule:
APG — OPG : § — OPG Actually the assignment of a stopping point in this case is needed to
improve the performance by preventing early any attempt for movement and combination in the
second phase. In Figure 3(c), the stopping point prevents early the movement of an actor nside an
Or-Subgraph from its lower-end point at the n — 1 actor-to-subgraph movement phase; in Figure 3(f)
the same hold for the OSG upper-end point.

In Figure 3(d), PG merging can be performed successfully, since when control comes to the outer
RPG all its n branches and the m branches of the inner RPG are fired immediately. Apparently, this
is equivalent to the firing of all the m + n — 1 branches by the RPG derived from the merging. The
used rule is : RPGouter — RPGinner : C — RPGouter

In Figure 3(e) however, all the n branches of the RPG are executed serially, while the m branches
of the RPPG are executed in parallel. Clearly, no PG combination can be done and RPG is marked
with a stopping point: RPG — RPPG : § — RPG

When the compression process is applied to the task tree the subgraph merging rules are equivalent
to the RDFG PG merging rules. These rules dosely resemble the operation of PG merging rules.
Note however, that cne subgraph merging corresponds to two PG mergings (the upper-end and the
lower-end PG mergings). As a consequence, the rules for subgraph merging are simpler and more
effective that their PG counterparts.

daisy
Rectangle

Figure 3: Mustrating some PG merging cases

daisy
Rectangle

3.4 The Compression Technique and the RDFG compression algorithm

In order to compress a DFG, the sequential and repetitive application of all of the three phases previ-
ously described is needed. Consequently, starting from the second outermost level. we proceed towards
the root of the task tree representation of the DFG, as we apply consecutively the three phases.

The compression algorithms that result from the application of the compression technique to the
RDFG model (similar algorithms can be easily derived for other DFG models), for both the RDFG
and task-tree representations (0 to N — 1 are the N RDFG levels) are:

The RDFG compression algorithm The: task tree compression algorithmn
Input: en RDFG and its leveling information a task free
Output: the compressed RDFG the compressed task tree
for working_level=N — 2 downto 0 do for working_level = N — 2 downto 0 do
begin begin
actor_combination(working_level); leaf_combination(working_level);
actor_to_subgraph(working_level); leaf_to_subgraph(working level);
PG _merging(working level); subgraph_merging(working_level);
end; end;

3

The expected cost of the compression process is O(N,) (see [12]), where N, is the number of nodes
of the original (uncompressed) task tree. Since the required processing time ncreases linearly with
the mumber of nodes, large task trees (and consequently, lazge DFGs) can be processed efficiently. By
studying the amount of achievable compression (using a Markovian model as the basis of the study).
we have found that it mainly depends on the percentage of computation actors. By keeping the
other involved parameters (that is, the relative frequencies of occurrence of each type of subgraph)
constant while varying this percentage, we have obtained results that back up the expected fact: as
the percentage of computation actors increases, the degree of achievable compresston increases also
(with a fast rate as well). The data in the following table (which were obtained by solving rmumerically
the Markovian model) give a quantitative view of this result (note that 20 % of the components are
subgraphs and 80 % are actors):

Percentage of computation actors | 50 % 55 % 60 % 65 % W% % 8 %
Degree of compression 0.551 0617 0.686 0.759 0.836 0.916 1.000

Note that in the last line of the above table, all the graph becomes a single actor, since no
communication actors are contained in it. A complete complexity analysis of the presented algorithm
can be found in [12].

4 Conclusions

The aims of this paper were twofold: first, to present a suitable data-flow graph model (RDFG)
for the representation of real-time distributed workloads, and second, to give a new, more efficient
compression technique that can be applied to all DFG-based models.

The application of this technique to the RDFG model has been analytically presented and analyzed.
In brief, in the context of this technique, the RDFG is first transformed to a task-tree which is a more
compacted and suitable for further analysis representation, after a leveling algorithm has been applied
to it in order to organize its components by level mimber. Then a three-phase compression algorithm
is used to compress the task tree (or the RDFG) and to create the equivalent one with the smallest
possible mumber of leaves (executable modules).

In a future work, we will generalize the compression process in order to handle actors with execution
times which have probability distributions different from the exponential, as well as execution times
which do not follow a single probability distribution.

The compression process presented here is the first phase of an integrated technique for the analysis
of real-time distributed applications. The other two phases (which will be also presented in future
works) of this technique are a reachability information computation and a CTMC model construction
phase, ‘during which the reachability nformation is computed for the nodes of the compacted task
tree, and the CTMC model of the system for the first stable cycle (initial CTMC) is constructed,
and a CTMC model analysis phase, where the time evolution of the initial CTMC, in the presence of

daisy
Rectangle

time-driven task invocations and of asynchronous events, gives rise to several CTMCs, which describe
formally the task system. The applications of the dynamic programming algorithm and of real-time
probabilistic temporal logics in the context of those CTMCs are important research topics that we are
currently studying.

This technique, together with the RDFG model, have been incorporated in SEPDS [7.8] a DFG-
based SDE for distributed applications. Some modifications to the original design of SEPDS have
been made, in order to make it appropriate for the specification and analysis of real-time distributed
applications. We are currently in the state of testing the proper functionality of the system and hope
to be able to present results on the system efficiency soon.

Acknowledgments

The authors wish to thank Prof. Paul Spirakis for his helpful comments on earlier drafts of this
report, and Dr. Anry Levy for many fruitful discussions on early stages of the research.

References

(1] D. Peng, and K.G. Shin, LLModeling of Concurrent Task Execution in a Distributed System for
Real-Time Control”, [EEE Transactions on Computers, C-36(4), Apr 1987, Pp 500-516.

[2] AK. Mok, P. Amerasinghe, M. Chen, S. Sutanthavibul and K, Tantisirivat, “Synthesis of a Real-
Time Message Processing System with Data-driven Timing constraints”, Proc. IEEE Real-Time
Systems Symposium, Dec 1987, pp 133-143.

[8] K. Ramamritham, J.A. Stankovic and W. Zhao, “Distributed Scheduling of Tasks with Deadlines
and Resource Requirements”, IEEE Transactions on Computers, 38(8), Aug 1989, pp 1110-1123.

[4] J.A. Stankovic, K. Ramamritham and §. Cheng, “Evaluation of a Flexible Task Scheduling Algo-
rithm for Distributed Hard Real-Time Systems”, IEEE Transactions on Computers, C-34(12),
Dec 1985, pp 1130-1143.

(5] 1.P. Huang.“Modeh'ng of software partition for distributed real-time applications”, IEEE Trans-
actions on Software Engineering, SE-11, Oct 1985, pp 1113-1126.

(6] M. Ajmone Marsan, G. Balbo, and G. Conte, Performance Models of Multiprocessor Systems,
MIT Press, 1988.

[7] A. Levy and G. Pavﬁdes, “Simulation vs. Prototype Execution: A Case Study”, Proc EUROCOM-
Al

8] A. Levy, J.van Katwijk, G. Pavlides and F. Tolsma, “SEPDS:A Su ort Environment for Proto--
b J pp

typing Distributed Systems”, Proc First Int’] Conf on System Integration, New Jersey, USA, Apr
1990.

[9] A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 1984,
[10] C.D. Polychronopoules, Parallel Programming and Compilers, Kluwer Academic Publishers, 1988.

[11] F. Distante and V. Piuri, “Distributed architecture to match optimum process allocation: A
simulated annealing based approach”, December 1987, pp 114-123.

[12] s. Papadimjtriou, G. Pavlides and A. Kameas, “A new compression algorithm for data—flow graph
models of distributed real-time tasks“, Technical Report TR.92.04.09, Computer Technology
Institute (CTI), Patras, Greece.

daisy
Rectangle

	Binder1.pdf
	SCAN1211.JPG
	SCAN1212.JPG

	Binder2.pdf
	SCAN1213.JPG
	SCAN1214.JPG
	SCAN1215.JPG
	SCAN1216.JPG

	Binder3.pdf
	SCAN1217.JPG
	SCAN1218.JPG

	219.pdf
	220.pdf

